
Chapter 2:

What Good are Models

and

What Models are Good?

Fred B. Schneider*

Department of Computer Science
Cornell University

Ithaca, New York 14853 U.S.A.

1. Refining Intuition

Distributed systems are hard to design and understand because we lack intuition for them.
Perhaps this is because our lives are fundamentally sequential and centralized. Perhaps not. In any
event, distributed systems are being built. We must develop an intuition, so that we can design distri-
buted systems that perform as we intend and so that we can understand existing distributed systems
well enough for modification as needs change.

Although developing an intuition for a new domain is difficult, it is a problem that engineers
and scientists have successfully dealt with before. We have acquired intuition about flight, about
nuclear physics, and about chaotic phenomena (like turbulence). Two approaches are conventionally
employed:

Experimental Observation. We build things and observe how they behave in various settings.
A body of experience accumulates about approaches that work. Even though we might not
understand why something works, this body of experience enables us to build things for settings
similar to those that have been studied.

Modeling and Analysis. We formulate a model by simplifying the object of study and postu-
lating a set of rules to define its behavior. We then analyize the model—using mathematics or
logic—and infer consequences. If the model accurately characterizes reality, then it becomes a
powerful mental tool.

Both of these approaches are illustrated in this text. Some chapters report experimental observation;
others are more concerned with describing and analyzing models. Taken together, however, the
chapters constitute a collective intuition for the design and analysis of distributed systems.
��������������������������������

*This material is based on work supported in part by the Office of Naval Research under contract N00014-91-J-1219,
the National Science Foundation under Grant No. CCR-8701103, and DARPA/NSF Grant No. CCR-9014363. Any opin-
ions, findings, and conclusions or recommendations expressed in this publication are those of the author and do not reflect
the views of these agencies.

-1-



In a young discipline—like distributed systems—there is an inevitable tension between advo-
cates for "experimental observation" and those for "modeling and analysis". This tension
masquerades as a dichotomy between "theory" and "practice". Each side believes that theirs is the
more effective way to refine intuition. Practitioners complain that they learn little from the theory.
Theoreticians complain that practitioners are not addressing the right problems. A theoretician might
simplify too much when defining a model; the analysis of such models will rarely enhance our intui-
tion. A practitioner might incorrectly generalize from experience or concentrate on the wrong attri-
butes of an object; our intuition does not profit from this, either. On the other hand, without experi-
mental observation, we have no basis for trusting our models. And, without models, we have no hope
of mastering the complexity that underlies distributed systems.

The remainder of this chapter is about models for distributed systems. We start by discussing
useful properties of models. We then illustrate that simple distributed systems can be difficult to
understand—our intuition is not well developed—and how models help. We next turn to two key
attributes of a distributed system and discuss models for these attributes. The first concerns assump-
tions about process execution speeds and message delivery delays. The implications of such assump-
tions are pursued in greater detail in Chapter 4 (???Ozalp+Marzullo) and Chapter 5 (???Ozalp+Sam).
The second attribute concerns failure modes. This material is fundamental for later chapters on
implementing fault tolerance, Chapter 6 (???FS state machine) and Chapter 7 (???FS et al primary-
backup). Finally, we argue that all of these models are useful and interesting, both to practitioners
and theoreticians.

2. Good Models

For our purposes, a model for an object is a collection of attributes and a set of rules that govern
how these attributes interact. There is no single correct model for an object. Answering different
types of questions about an object usually requires that we employ different models, each with dif-
ferent attributes and/or rules. A model is accurate to the extent that analyzing it yields truths about
the object of interest. A model is tractable if such an analysis is actually possible.

Defining an accurate model is not difficult; defining an accurate and tractable model is. An
accurate and tractable model will include exactly those attributes that affect the phenomena of
interest. Selecting these attributes requires taste and insight. Level of detail is a key issue.

In a tractable model, rules governing interactions of attributes will be in a form that supports
analysis. For example, mathematical and logical formulas can be analyzed by uninterpreted symbolic
manipulations. This makes these formalisms well suited for defining models. Computer simulations
can also define models. While not as easy to analyze, a computer simulation is usually easier to
analyize than the system it simulates.

In building models for distributed systems, we typically seek answers to two fundamental ques-
tions:

Feasibility. What classes of problems can be solved?

Cost. For those classes that can be solved, how expensive must the solution be?

Both questions have practical import as well as having theoretical value. First, being able to recog-
nize an unsolvable problem lurking beneath a system’s requirements can head-off wasted effort in
design, implementation, and testing. Second, knowing the cost implications of solving a particular
problem allows us to avoid designs requiring protocols that are inherently slow or expensive. Finally,
knowing the inherent cost of solving a particular problem provides a yardstick with which we can

-2-



evaluate any solution that we devise.

By studying algorithms and computational complexity, most undergraduates learn about unde-
cidable problems and about complexity classes, the two issues raised above. The study builds intui-
tion for a particular model of computation—one that involves a single sequential process and a uni-
form access-time memory. Unfortunately, this is neither an accurate nor useful model for the systems
that concern us. Distributed systems comprise multiple processes communicating over narrow-
bandwidth, high-latency channels, with some processes and/or channels faulty. The additional
processes provide more computational power but require coordination. The channel bandwidth limi-
tations help isolate the effects of failures but also mean that interprocess communication is a scarce
system resource. In short, distributed systems raise new concerns and understanding these requires
new models.

A Coordination Problem

In implementing distributed systems, process coordination and coping with failures are per-
vasive concerns. Here is an example of such a problem.

Coordination Problem. Two processes, A and B, communicate by sending and receiving
messages on a bidirectional channel. Neither process can fail. However, the channel can ex-
perience transient failures, resulting in the loss of a subset of the messages that have been
sent. Devise a protocol where either of two actions α and β are possible, but (i) both
processes take the same action and (ii) neither takes both actions. �

That this problem has no solution usually comes as a surprise. Here is the proof.

Any protocol that solves this problem is equivalent to one in which there are rounds of
message exchange: first A (say) sends to B, next B sends to A, then A sends to B, and so on.
We show that in assuming the existence of a protocol to solve the problem, we are able to
derive a contradiction. This establishes that no such protocol exists.

Select the protocol that solves the problem using the fewest rounds. By assumption,
such a protocol must exist, and, by construction, no protocol solving the problem using
fewer rounds exists. Without loss of generality, suppose that m, the last message sent by ei-
ther process, is sent by A.

Observe that the action ultimately taken by A cannot depend on whether m is received
by B, because its receipt could never be learned by A (since this is the last message). Thus,
A’s choice of action α or β does not depend on m. Next, observe that the action ultimately
taken by B cannot depend on whether m is received by B, because B must make the same
choice of action α or β even if m is lost (due to a channel failure).

Having argued that the action chosen A and B does not depend on m, we conclude that
m is superfluous. Thus, we can construct a new protocol in which one fewer message is sent.
However, the existence of such a shorter protocol contradicts the assumption that the proto-
col we employed used the fewest number of rounds. �

We established that the Coordination Problem could not be solved by building a simple, infor-
mal model. Two insights were used in this model:

(1) All protocols between two processes are equivalent to a series of message exchanges.

(2) Actions taken by a process depend only on the sequence of messages it has received.

-3-



Having defined the model and analyized it, we have now refined our intuition. Notice that is so doing
we not only learned about this particular problem but also about variations. For example, we might
wonder whether coordination of two processes is possible if the channel never fails (so messages are
never lost) or if the channel informs the sender whenever a message is lost. For each modification,
we can determine whether the change invalidates some assertion being made in the analysis (i.e. the
proof above) and thus we can determine whether the change invalidates the proof.

3. Synchronous versus Asynchronous Systems

When modeling distributed systems, it is useful to distinguish between asynchronous and syn-
chronous systems. With an asynchronous system, we make no assumptions about process execution
speeds and/or message delivery delays; with a synchronous system, we do make assumptions about
these parameters. In particular, the relative speeds of processes in a synchronous system is assumed
to be bounded, as are any delays associated with communications channels.

Postulating that a system is asynchronous is a non-assumption. Every system is asynchronous.
Even a system in which processes run in lock step and message delivery is instantaneous satisfies the
definition of an asynchronous system (as well as that of a synchronous system). Because all systems
are asynchronous, a protocol designed for use in an asynchronous system can be used in any distri-
buted system. This is a compelling argument for studying asynchronous systems.

In theory, any system that employs reasonable schedulers can be regarded as being synchro-
nous, because there are then (trivial) bounds on the relative speeds of processes and channels. This,
however, is not a useful way to view a distributed system. Protocols that assume the system is syn-
chronous exhibit performance degradation as the ratios of the various process speeds and delivery
delays increase. Reasonable throughput can be attained by these protocols only when processes exe-
cute at about the same speed and delivery delays are not too large. Thus, there is no value to consid-
ering a system as being synchronous unless the relative execution speeds of processes and channel
delays are close.

In practice, then, postulating that a system is synchronous constrains how processes and com-
munications channels are implemented. The scheduler that multiplexes processors must not violate
the constraints on process execution speeds. If long-haul networks are employed for communica-
tions, then queuing delays, unpredictable routings, and retransmission due to errors must not be
allowed to violate the constraints on channel delays. On the other hand, asserting that the relative
speeds of processes is bounded is equivalent to assuming that all processors in the system have access
to approximately rate-synchronized real-time clocks. This is because either one can be used to imple-
ment the other. Thus, timeouts and other time-based protocol techniques are possible only when a
system is synchronous.

An Election Protocol

In asserting that a system is synchronous, we rule out certain system behaviors. This, in turn,
enables us to employ simpler or cheaper protocols than would be required to solve the same problem
in an asynchronous system (where these behaviors are possible). An example is the following elec-
tion problem.

Election Problem. A set of processes P 1, P 2, ..., Pn must select a leader. Each process Pi

has a unique identifier uid(i). Devise a protocol so that all of the processes learn the identity
of the leader. Assume all processes start executing at the same time and that all communi-

-4-



cate using broadcasts that are reliable. �

Solving this problem in an asynchronous system is not difficult, but somewhat expensive. Each
process Pi broadcasts 〈i , uid(i)〉. Every process will eventually receive these broadcasts, so each can
independently "elect" the Pi for which uid(i) is smallest. Notice that n broadcasts are required for an
election.

In a synchronous system, it is possible to solve the Election Problem with only a single broad-
cast. Let τ be a known constant bigger than the largest message delivery delay plus the largest differ-
ence that can be observed at any instant by reading clocks at two arbitrary processors. Now, it
suffices for each process Pi to wait until either (i) it receives a broadcast or (ii) τ∗uid(i) seconds
elapse on its clock at which time it broadcasts 〈i〉. The first process that makes a broadcast is elected.

We have illustrated that by restricting consideration to synchronous systems, time can be used
to good advantage in coordinating processes. The act of not sending a message can convey informa-
tion to processes. This technique is used, for example, by processes in the synchronous election pro-
tocol above to infer values of uid(i) that are held by no process.

4. Failure Models

A variety of failure models have been proposed in connection with distributed systems. All are
based on assigning responsibility for faulty behavior to the system’s components—processors and
communications channels. It is faulty components that we count, not occurrences of faulty behavior.
And, we speak of a system being t-fault tolerant when that system will continue satisfying its
specification provided that no more than t of its components are faulty.

By way of contrast, in classical work on fault-tolerant computing systems, it is the occurrences
of faulty behavior that are counted. Statistical measures of reliability and availability, like MTBF
(mean-time-between-failures) and probability of failure over a given interval, are deduced from esti-
mates of elapsed time between fault occurrences. Such characterizations are important to users of a
system, but there are real advantages to describing the fault tolerance of a system in terms of the max-
imum number of faulty components that can be tolerated over some interval of interest. Asserting
that a system is t-fault tolerant is a measure of the fault tolerance supported by the system’s architec-
ture, in contrast to fault tolerance achieved simply by using reliable components.

Fault tolerance of a system will depend on the reliability of the components used in constructing
that system—in particular, the probability that there will be more than t failures during the operating
interval of interest. Thus, once t has been chosen, it is not difficult to derive the more traditional sta-
tistical measures of reliability. We simply compute the probabilities of having various configurations
of 0 through t faulty components. So, no expressive power is lost by counting faulty components—as
we do—rather than counting fault occurrences.

Some care is required in defining failure models, however, when it is the faulty components that
are being counted. For example, consider a fault that leads to a message loss. We could attribute this
fault to the sender, the receiver, or the channel. Message loss due to signal corruption from electrical
noise should be blamed on the channel, but message loss due to buffer overflow at the receiver should
be blamed on the receiver. Moreover, since replication is the only way to tolerate faulty components,
the architecture and cost of implementing a t-fault tolerant system very much depends on exactly how
fault occurrences are being attributed to components. Incorrect attribution leads to an inaccurate dis-
tributed system model; erroneous conclusions about system architecture are sure to follow.

-5-



A faulty component exhibits behavior consistent with some failure model being assumed.
Failure models commonly found in the distributed systems literature include:

Failstop. A processor fails by halting. Once it halts, the processor remains in that state. The
fact that a processor has failed is detectable by other processors [S84].

Crash. A processor fails by halting. Once it halts, the processor remains in that state. The fact
that a processor has failed may not be detectable by other processors [F83].

Crash+Link. A processor fails by halting. Once it halts, the processor remains in that state. A
link fails by losing some messages, but does not delay, duplicate, or corrupt messages
[BMST92].

Receive-Omission. A processor fails by receiving only a subset of the messages that have been
sent to it or by halting and remaining halted [PT86].

Send-Omission. A processor fails by transmitting only a subset of the messages that it actually
attempts to send or by halting and remaining halted [H84].

General Omission. A processor fails by receiving only a subset of the messages that have been
sent to it, by transmitting only a subset of the messages that it actually attempts send, and/or by
halting and remaining halted [PT86].

Byzantine Failures. A processor fails by exhibiting arbitrary behavior [LSP82].

Failstop failures are the least disruptive, because processors never perform erroneous actions
and failures are detectable. Other processors can safely perform actions on behalf of a faulty failstop
processor.

Unless the system is synchronous, it is not possible to distinguish between a processor that is
executing very slowly and one that has halted due to a crash failure. Yet, the ability to make this dis-
tinction can be important. A processor that has crashed can take no further action, but a processor
that is merely slow can. Other processors can safely perform actions on behalf of a crashed proces-
sor, but not on behalf of a slow one, because subsequent actions by the slow processor might not be
consistent with actions performed on its behalf by others. Thus, crash failures in asynchronous sys-
tems are harder to deal with than failstop failures. In synchronous systems, however, the crash and
failstop models are equivalent.

The next four failure models—Crash+Link, Receive-Omission, Send-Omission, and General
Omission—all deal with message loss, each modeling a different cause for the loss and attributing the
loss to a different component. Finally, Byzantine failures are the most disruptive. A system that can
tolerate Byzantine failures can tolerate anything.

The extremes of our spectrum of models—failstop and Byzantine—are not controversial, but
there can be debate about the other models. Why not define a failure model corresponding to
memory disruptions or misbehavior of the processor’s arithmetic-logic unit (ALU)? The first reason
brings us back to the two fundamental questions of Section 2. The feasibility and cost of solving cer-
tain fundamental problems is known to differ across the seven failure models enumerated above. (We
return to this point below.) A second reason that these failure models are interesting is a matter of
taste in abstractions. A reasonable abstraction for a processor in a distributed system is an object that
sends and receives messages. The failure models given above concern ways that such an abstraction
might be faulty. Failure models involving the contents of memory or the functioning of an ALU, for
example, concern internal (and largely irrelevant) details of the processor abstraction. A good model

-6-



encourages suppression of irrelevant details.

Fault Tolerance and Distributed Systems

As the size of a distributed system increases, so does the number of its components and, there-
fore, so does the probability that some component will fail. Thus, designers of distributed systems
must be concerned from the outset with implementing fault tolerance. Protocols and system architec-
tures that are not fault tolerant simply are not very useful in this setting.

The link between fault tolerance and distributed systems goes in the other direction as well.
Implementing a distributed system is the only way to achieve fault tolerance. All methods for achiev-
ing fault tolerance employ replication of function using components that fail independently. In a dis-
tributed system, the physical separation and isolation of processors linked by a communications net-
work ensures that components fail independently. Thus, achieving fault tolerance in a computing
system can lead to solving problems traditionally associated with distributed computing systems.

Failures—be they hard or transient—can be detected only by replicating actions in failure-
independent ways. One way to do this is by performing the action using components that are physi-
cally and electrically isolated; we call this replication in space. The validity of the approach follows
from an empirically justified belief in the independence of failures at physically and electrically iso-
lated devices. A second approach to replication is for a single device to repeatedly perform the
action. We call this replication in time. Replication in time is valid only for transient failures.

If the results of performing a set of replicated actions disagree, a failure has occurred. Without
making further assumptions, this is the strongest statement that can be made. In particular, if the
results agree, we cannot assert that no component is faulty (and the results are correct). This is
because if there are enough faulty components, all might be corrupted, yet still agree. For Byzantine
failures, t +1-fold replication permits t-fault tolerant failure detection but not masking. This is
because when there is disagreement among t +1 independently obtained results, one cannot assume
that the majority value is correct. In order to implement t-fault tolerant masking, 2t +1-fold replica-
tion is needed, since then as many as t values can be faulty without causing the majority value to be
faulty. At the other extreme of our failure models spectrum, for failstop failures a single component
suffices for detection. And, t +1-fold replication is sufficient for masking the failure of as many as t
faulty components.

5. Which Model When?

Theoreticians have good reason to study all of the models we have discussed. The models each
idealize some dimension of real systems, and it is useful to know how each system attribute affects
the feasibility or cost of solving a problem. Theoreticians also may have reason to define new
models. Identifying attributes that affect the problems that arise in distributed systems allows us to
identify the key dimensions of the problems we face.

The dilemma faced by practitioners is that of deciding between models when building a system.
Should we assume that processes are asynchronous or synchronous, failstop or Byzantine? The
answer depends on how the model is being used. One way to regard a model is as an interface
definition—a set of assumptions that programmers can make about the behavior of system com-
ponents. Programs are written to work correctly assuming the actual system behaves as prescribed by
the model. And, when system behavior is not consistent with the model, then no guarantees can be
made.

-7-



For example, a system designed assuming that Byzantine failures are possible can tolerate any-
thing. Assuming Byzantine failures is prudent in mission critical systems, because the cost of system
failure is usually great, so there is considerable incentive to reduce the risk of a system failure. For
most applications, however, it suffices to assume a more benign failure model. In those rare cir-
cumstances where the system does not satisfy the model, we must be prepared for the system to
violate its specification.

Large systems, especially, are rarely constructed as single monolithic entities. Rather, the sys-
tem is structured by implementing abstractions. Each abstraction builds on other abstractions, pro-
viding some added functionality. Here, having a collection of models can be used to good advantage.
Among the abstractions that might be implemented are processors possessing the attributes discussed
above. We might start by assuming our processors only exhibit crash failures. Failstop processors
might then be approximated by using timeout-based protocols. Finally, if we discover that processors
do not only exhibit crash failures we might go back and add various sanity-tests to system code, caus-
ing processors to crash rather than behave in a way not permitted by the crash failure model.

Lastly, the various models can and should be regarded as limiting cases. The behavior of a real
system is bounded by our models. Thus, understanding the feasibility and costs associated with solv-
ing problems in these models, can give us insight into the feasibility and cost of solving a problem in
some given real system whose behavior lies between the models.

References

[BMST92] Budhiraja, N., K. Marzullo, F.B. Schneider, and S. Toueg. Primary-backup proto-
cols: Lower bounds and optimal implementations. Proceedings of the Third IFIP
Working Conference on Dependable Computing for Critical Applications (Mon-
dello, Italy, Sept. 1992), 187-198.

[F83] Fischer, M.J. The consensus problem in unreliable distributed systems (A brief
survey). Proc. 1983 International Conference on Foundations of Computations
Theory, Lecture Notes in Computer Science, Vol. 158, Springer-Verlag, New
York, 1983, 127-140.

[H84] Hadzilacos, V. Issues of Fault Tolerance in Concurrent Computations Ph.D.
thesis, Harvard University, June 1984.

[LSP82] Lamport, L., R. Shostak, and M. Pease. The Byzantine generals problem. ACM
TOPLAS 4, 3 (July 1982), 382-401.

[PT86] Perry, K.J. and S. Toueg. Distributed agreement in the presence of processor and
communication faults. IEEE Transactions on Software Engineering SE-12, No. 3,
(March 1986) 477-482

[S84] Schneider, F.B. Byzantine generals in action: Implementing fail-stop processors.
ACM TOCS 2, 2 (May 1984), 145-154.

-8-


